Mario-Bebendorf Mario-Bebendorf

Prof. Dr. Mario Bebendorf

Mathematik · Universität Bayreuth

core methods team

Mario-Bebendorf
Email
Mario Bebendorf schreiben
Phone
+49 921 55-7150
Fax
+49 921 55-7155
Office
FAN C, 0.41
Homepage
http://www.wr.uni-bayreuth.de

Personal Information

Employment History

01/2015 - Professor (Chair) of Scientific Computing, University of Bayreuth, Germany
10/2008 - 12/2014 Professor of Numerical Analysis, University of Bonn, Germany
10/2007 - 09/2008 Acting Professor of Numerical Analysis, University of Bonn, Germany
05/2003 - 09/2008 Juniorprofessor of Numerical Methods for PDEs, University of Leipzig, Germany
10/2000 - 04/2003 Postdoctoral Research Assistant, Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
07/1997 - 09/2000 Scientific Assistant, Saarland University, Germany

Academic History

01/2007 Habilitation in Mathematics, University of Leipzig, Germany
11/2000 Doctorate degree (Summa Cum Laude) in Mathematics, Saarland University, Germany
06/1997 Diploma (with Distinction) in Techno-Mathematics, University of Kaiserslautern, Germany
10/1992 - 06/1997 Student of Techno-Mathematics, University of Kaiserslautern, Germany and Oxford University, England

Positions Offered

2012 Professor (Chair) of Numerical Mathematics (W3), Leibniz University Hannover, Germany
2009 Professor (Chair) of Applied Mathematics (W3), TU Hamburg-Harburg, Germany
2008 Professor of Numerical Mathematics (W2), University of Kassel, Germany
2003 Juniorprof. of Numerical Methods for PDEs (W1), University of Leipzig, Germany

Scholarships and Memberships

2013-2015 Member of the Collab. Research Center (SFB) 1060 "The Mathematics o Emergent Effects"
2008-2012 Member of the Collab. Research Center (SFB) 611 "Singular Phenomena and Scaling in Mathematical Models"
06/2006 Feodor Lynen research fellowship awarded by Alexander von Humboldt foundation
01/1996 ERASMUS scholarship at Oxford University

Competences

Mario Bebendorf represents the area of numerical methods for integral and partial differential equations. Special attention is paid to fast and robust methods for such problems. 

Publications related to MODUS

2019

2018

2017

2016

University of Bayreuth -